On the minimum Kirchhoff index of graphs with a fixed number of cut vertices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the fixed number of graphs

‎A set of vertices $S$ of a graph $G$ is called a fixing set of $G$‎, ‎if only the trivial automorphism of $G$ fixes every vertex in $S$‎. ‎The fixing number of a graph is the smallest cardinality of a fixing‎ ‎set‎. ‎The fixed number of a graph $G$ is the minimum $k$‎, ‎such that ‎every $k$-set of vertices of $G$ is a fixing set of $G$‎. ‎A graph $G$‎ ‎is called a $k$-fixed graph‎, ‎if its fix...

متن کامل

graphs with fixed number of pendent vertices and minimal first zagreb index

the first zagreb index $m_1$ of a graph $g$ is equal to the sum of squaresof degrees of the vertices of $g$. goubko proved that for trees with $n_1$pendent vertices, $m_1 geq 9,n_1-16$. we show how this result can beextended to hold for any connected graph with cyclomatic number $gamma geq 0$.in addition, graphs with $n$ vertices, $n_1$ pendent vertices, cyclomaticnumber $gamma$, and minimal $m...

متن کامل

Unicyclic radially-maximal graphs on the minimum number of vertices

We characterize unicyclic, non-selfcentric, radially-maximal graphs on the minimum number of vertices. Such graphs must have radius r ≥ 5, and we prove that the number of these graphs is 1 48 r + O(r).

متن کامل

Maximizing Kirchhoff index of unicyclic graphs with fixed maximum degree

The Kirchhoff index of a connected graph is the sum of resistance distances between all unordered pairs of vertices in the graph. Its considerable applications are found in a variety of fields. In this paper, we determine the maximum value of Kirchhoff index among the unicyclic graphs with fixed number of vertices and maximum degree, and characterize the corresponding extremal graph.

متن کامل

MORE GRAPHS WHOSE ENERGY EXCEEDS THE NUMBER OF VERTICES

The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of G. Several classes of graphs are known that satisfy the condition E(G) > n , where n is the number of vertices. We now show that the same property holds for (i) biregular graphs of degree a b , with q quadrangles, if q<= abn/4 and 5<=a < b = 0 (iii) triregular graphs of degree 1, a, b that are quadran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2016

ISSN: 0166-218X

DOI: 10.1016/j.dam.2016.02.022